科学家利用量子技术通过改变不确定性而不是打破不确定性来提高感测的精确度,从而为先进的传感器铺平了道路。
Scientists used quantum tech to boost precision in sensing by shifting uncertainty, not breaking it, paving the way for advanced sensors.
悉尼大学的研究人员和国际伙伴开发了一种新的量子测量技术,重新配置了海森堡的不确定性原则,而不是违反这一原则,通过将不确定性转移到不太相关的细节,使得能够进行更精确的感测。
Researchers at the University of Sydney and international partners have developed a new quantum measurement technique that reconfigures Heisenberg’s uncertainty principle rather than violating it, enabling more precise sensing by shifting uncertainty to less relevant details.
该小组利用锁定离子和量子误差校正方法,提高了对原子规模微小变化的敏感度,改善了对导航、医学和天文学应用微弱信号的探测。
Using trapped ions and quantum error correction methods, the team enhanced sensitivity to tiny changes at the atomic scale, improving detection of faint signals for applications in navigation, medicine, and astronomy.
该方法在实验中得到验证,并在《科学进步和自然物理》中发表,利用量子计算工具超过标准限度,为仍在实验室开发的下一代量子传感器提供了一条充满希望的道路。
The approach, validated in experiments and published in Science Advances and Nature Physics, leverages quantum computing tools to surpass standard limits, offering a promising path for next-generation quantum sensors still in laboratory development.